| Types | of Vaccines and Their Pros and Cons | | | |---------------------------|---|--|---| | Туре | Description | Major Pros | Major Cons | | Live, attenuated | Whole pathogen treated to decrease
pathogenicity but maintain
immunogenicity; may still replicate | Low number of doses usually very
effective
Minimal need for adjuvant*
Supplies B and T epitopes | Cold chain required
Chance of reversion of attenuating
mutation | | Killed or inactivated | Whole pathogen killed or inactivated to
block replication but maintain
immunogenicity | No possibility of reversion
No cold chain required
Supplies T and B epitopes | Cannot replicate so requires boosters
and adjuvant
Does not induce robust Tc responses | | Toxoid | Chemically inactivated toxin of pathogen | No need to use whole organism | Only effective if disease caused solely by toxin | | Subunit | Pathogen protein or polysaccharide
purified from natural sources or
synthesized using recombinant DNA
methods | Avoids use of whole organism Can be manipulated to increase immunogenicity | Can be costly to produce May not be as immunogenic as natural pathogen component Does not induce robust Tc responses | | Peptide | Pathogen peptide purified from natural
sources or synthesized using recombinant
DNA methods | Avoids use of whole organism
Composition is known
Very stable | Epitope size and number restricted
May require coupling to a carrier
protein | | Recombinant DNA
vector | Virus-based vector containing recombinant
DNA of pathogen antigen. Vaccinee is
infected with the viral vector and the
pathogen DNA is transcribed and
translated within the vaccinee's cells like a
viral protein. | Avoids use of natural pathogen
Replicates like a pathogen to produce
large armounts of immunogen
Supplies T and B epitopes
Minimal need for boosters and
adjuvant | Possible side effects due to vector components Anti-vector antibodies raised during priming may necessitate boosting with a different vector | | Naked DNA | Small plasmid containing recombinant
pathogen DNA. Plasmid is injected into a
vaccinee and the pathogen DNA is taken
up by the vaccinee's cells and transcribed | Easy and inexpensive to manipulate
Induces B, Th and Tc responses
Plasmid sequences may act as
adjuvant | Integration of plasmid into host cell genome may induce tumorigenesis |